Comprehensive Cardiovascular magnetic resonance of myocardial mechanics in mice using three-dimensional cine DENSE

نویسندگان

  • Xiaodong Zhong
  • Lauren B Gibberman
  • Bruce S Spottiswoode
  • Andrew D Gilliam
  • Craig H Meyer
  • Brent A French
  • Frederick H Epstein
چکیده

BACKGROUND Quantitative noninvasive imaging of myocardial mechanics in mice enables studies of the roles of individual genes in cardiac function. We sought to develop comprehensive three-dimensional methods for imaging myocardial mechanics in mice. METHODS A 3D cine DENSE pulse sequence was implemented on a 7T small-bore scanner. The sequence used three-point phase cycling for artifact suppression and a stack-of-spirals k-space trajectory for efficient data acquisition. A semi-automatic 2D method was adapted for 3D image segmentation, and automated 3D methods to calculate strain, twist, and torsion were employed. A scan protocol that covered the majority of the left ventricle in a scan time of less than 25 minutes was developed, and seven healthy C57Bl/6 mice were studied. RESULTS Using these methods, multiphase normal and shear strains were measured, as were myocardial twist and torsion. Peak end-systolic values for the normal strains at the mid-ventricular level were 0.29 ± 0.17, -0.13 ± 0.03, and -0.18 ± 0.14 for E(rr), E(cc), and E(ll), respectively. Peak end-systolic values for the shear strains were 0.00 ± 0.08, 0.04 ± 0.12, and 0.03 ± 0.07 for E(rc), E(rl), and E(cl), respectively. The peak end-systolic normalized torsion was 5.6 ± 0.9°. CONCLUSIONS Using a 3D cine DENSE sequence tailored for cardiac imaging in mice at 7 T, a comprehensive assessment of 3D myocardial mechanics can be achieved with a scan time of less than 25 minutes and an image analysis time of approximately 1 hour.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping right ventricular myocardial mechanics using 3D cine DENSE cardiovascular magnetic resonance

BACKGROUND The mechanics of the right ventricle (RV) are not well understood as studies of the RV have been limited. This is, in part, due to the RV's thin wall, asymmetric geometry and irregular motion. However, the RV plays an important role in cardiovascular function. This study aims to describe the complex mechanics of the healthy RV using three dimensional (3D) cine displacement encoding w...

متن کامل

Imaging three-dimensional myocardial mechanics using navigator-gated volumetric spiral cine DENSE MRI.

A navigator-gated 3D spiral cine displacement encoding with stimulated echoes (DENSE) pulse sequence for imaging 3D myocardial mechanics was developed. In addition, previously described 2D postprocessing algorithms including phase unwrapping, tissue tracking, and strain tensor calculation for the left ventricle (LV) were extended to 3D. These 3D methods were evaluated in five healthy volunteers...

متن کامل

Simplified post processing of cine DENSE cardiovascular magnetic resonance for quantification of cardiac mechanics

BACKGROUND Cardiovascular magnetic resonance using displacement encoding with stimulated echoes (DENSE) is capable of assessing advanced measures of cardiac mechanics such as strain and torsion. A potential hurdle to widespread clinical adoption of DENSE is the time required to manually segment the myocardium during post-processing of the images. To overcome this hurdle, we proposed a radical a...

متن کامل

Evaluation of myocardial volume heterogeneity during end-diastole and end-systole using cine MRI.

The aim of this study was to examine the difference in the myocardial volume between end-diastole and end-systole in 24 human volunteers, using steady-state free precession gradient-echo cine imaging of both long- and short-axis views of the left ventricle and a newly developed three-dimensional (3D) analysis method. In addition, we examined retrospectively the cine magnetic resonance imaging (...

متن کامل

Accelerated two-dimensional cine DENSE cardiovascular magnetic resonance using compressed sensing and parallel imaging

BACKGROUND Cine Displacement Encoding with Stimulated Echoes (DENSE) provides accurate quantitative imaging of cardiac mechanics with rapid displacement and strain analysis; however, image acquisition times are relatively long. Compressed sensing (CS) with parallel imaging (PI) can generally provide high-quality images recovered from data sampled below the Nyquist rate. The purposes of the pres...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2011